| HighRow |
|---|
| (Penalties: 0) | | 1 | 52.432 [1] | | 2 | 51.621 [1] | | 3 | 51.732 [2] | | 4 | 52.437 [2] | | 5 | 56.17 [3] | | 6 | 56.615 [3] | | 7 | 55.039 [3] | | 8 | 52.742 [3] | | 9 | 54.241 [3] |
| | jordan stowe |
|---|
| (Penalties: 0) | | 1 | 56.225 [4] | | 2 | 53.003 [3] | | 3 | 53.367 [4] | | 4 | 54.808 [4] | | 5 | 55.294 [4] | | 6 | 54.584 [4] | | 7 | 54.242 [4] | | 8 | 53.404 [4] | | 9 | 53.159 [4] |
| | Britt |
|---|
| (Penalties: 0) | | 1 | 58.749 [7] | | 2 | 56.466 [7] | | 3 | 57.978 [7] | | 4 | 57.533 [7] | | 5 | 55.849 [7] | | 6 | 54.56 [6] | | 7 | 56.76 [7] | | 8 | 55.391 [7] | | 9 | 57.543 [7] |
| | Scott |
|---|
| (Penalties: 0) | | 1 | 54.517 [2] | | 2 | 52.01 [2] | | 3 | 51.277 [1] | | 4 | 52.029 [1] | | 5 | 54.058 [1] | | 6 | 52.91 [1] | | 7 | 51.312 [1] | | 8 | 51.818 [1] | | 9 | 51.618 [1] |
| | Jay |
|---|
| (Penalties: 0) | | 1 | 63.631 [9] | | 2 | 59.295 [9] | | 3 | 58.893 [9] | | 4 | 61.706 [10] | | 5 | 59.928 [10] | | 6 | 63.086 [10] | | 7 | 58.996 [10] | | 8 | 60.228 [10] | | 9 | |
| | Katie Gamble |
|---|
| (Penalties: 0) | | 1 | 61.972 [8] | | 2 | 60.991 [10] | | 3 | 164.267 [10] | | 4 | 58.405 [9] | | 5 | 57.202 [8] | | 6 | 58.187 [8] | | 7 | 57.45 [8] | | 8 | | | 9 | |
| | Luke Bruce |
|---|
| (Penalties: 0) | | 1 | 57.94 [5] | | 2 | 57.99 [8] | | 3 | 57.773 [8] | | 4 | 60.052 [8] | | 5 | 59.958 [9] | | 6 | 57.869 [9] | | 7 | 60.534 [9] | | 8 | 56.865 [8] | | 9 | 56.703 [8] |
| | Jesus Ascencio |
|---|
| (Penalties: 0) | | 1 | 58.418 [6] | | 2 | 53.982 [4] | | 3 | 52.538 [3] | | 4 | 99.675 [3] | | 5 | 51.378 [2] | | 6 | 56.7 [2] | | 7 | 53.157 [2] | | 8 | 53.877 [2] | | 9 | |
| | Keely Wagner |
|---|
| (Penalties: 0) | | 1 | 91.399 [10] | | 2 | 55.247 [6] | | 3 | 56.357 [6] | | 4 | 56.201 [6] | | 5 | 55.177 [6] | | 6 | 55.338 [7] | | 7 | 53.706 [5] | | 8 | 53.815 [6] | | 9 | |
| | alex |
|---|
| (Penalties: 0) | | 1 | 54.816 [3] | | 2 | 55.566 [5] | | 3 | 55.235 [5] | | 4 | 54.015 [5] | | 5 | 55.586 [5] | | 6 | 57.645 [5] | | 7 | 54.666 [6] | | 8 | 53.444 [5] | | 9 | 55.063 [5] |
|